Monday, 24 July 2017

Previsão De Demanda Por Média Móvel


OR-Notes são uma série de notas introdutórias sobre tópicos que se enquadram no título geral do campo de pesquisa operacional (OR). Eles foram originalmente usados ​​por mim em um curso introdutório OU eu dou no Imperial College. Estão agora disponíveis para uso por qualquer aluno e professor interessado em OU sujeito às seguintes condições. Uma lista completa dos tópicos disponíveis em OR-Notes pode ser encontrada aqui. Exemplos de previsão Exemplo de previsão 1996 Exame UG A procura por um produto em cada um dos últimos cinco meses é mostrada abaixo. Use uma média móvel de dois meses para gerar uma previsão de demanda no mês 6. Aplique a suavização exponencial com uma constante de suavização de 0,9 para gerar uma previsão de demanda por demanda no mês 6. Qual destas duas previsões você prefere e por que? A média para os meses dois a cinco é dada por: A previsão para o mês seis é apenas a média móvel para o mês anterior que ou seja, a média móvel para o mês 5 m 5 2350. Aplicando suavização exponencial com uma constante de suavização de 0,9 obtemos: A previsão para o mês seis é apenas a média para o mês 5 M 5 2386 Para comparar as duas previsões, calculamos o desvio quadrático médio (MSD). Se fizermos isso, verificamos que para a média móvel MSD (15-19) sup2 (18-23) sup2 (21-24) sup23 16.67 e para a média exponencialmente suavizada com uma constante de suavização de 0.9 MSD (13-17) sup2 (16,60-19) sup2 (18,76 - 23) sup2 (22,58-24) sup24 10,44 Em geral, vemos que a suavização exponencial parece dar as melhores previsões de um mês de antecedência, uma vez que tem um MSD mais baixo. Assim, preferimos a previsão de 2386 que foi produzida por suavização exponencial. Exemplo de previsão 1994 UG exam A tabela abaixo mostra a procura de um novo aftershave em uma loja para cada um dos últimos 7 meses. Calcule uma média móvel de dois meses para os meses dois a sete. Qual seria sua previsão para a demanda no mês oito Aplicar suavização exponencial com uma constante de suavização de 0,1 para derivar uma previsão para a demanda no mês oito. Qual das duas previsões para o mês oito você prefere e por que? O detentor de loja acredita que os clientes estão mudando para este novo pós-barba de outras marcas. Discuta como você pode modelar esse comportamento de comutação e indicar os dados que você precisaria para confirmar se essa mudança está ocorrendo ou não. A média móvel de dois meses para os meses dois a sete é dada por: A previsão para o mês oito é apenas a média móvel para o mês anterior que ou seja, a média móvel para o mês 7 m 7 46. Aplicando alisamento exponencial com uma constante de suavização de 0,1 nós Obter: Como antes da previsão para o mês oito é apenas a média para o mês 7 M 7 31,11 31 (como não podemos ter fracionada demanda). Para comparar as duas previsões, calculamos o desvio quadrático médio (MSD). Se fizermos isso, descobrimos que para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,1 Overall, então vemos que a média móvel de dois meses parece dar as melhores previsões de um mês de antecedência, uma vez que tem um menor MSD. Assim, preferimos a previsão de 46 que foi produzida pela média móvel de dois meses. Para examinar a mudança precisamos usar um modelo de processo de Markov, onde marcas de estados e nós precisaríamos de informações de estado iniciais e probabilidades de troca de clientes (de pesquisas). Teríamos de executar o modelo em dados históricos para ver se temos um ajuste entre o modelo eo comportamento histórico. Exemplo de previsão 1992 UG exame A tabela abaixo mostra a demanda por uma determinada marca de barbear em uma loja para cada um dos últimos nove meses. Calcule uma média móvel de três meses para os meses três a nove. Qual seria sua previsão para a demanda no mês dez Aplicar suavização exponencial com uma constante de suavização de 0,3 para derivar uma previsão para a demanda no mês dez. Qual das duas previsões para o mês dez você prefere e por que? A média móvel de três meses para os meses 3 a 9 é dada por: A previsão para o mês 10 é apenas a média móvel para o mês anterior que ou seja, a média móvel para o mês 9 m 9 20,33. Portanto, como não podemos ter uma demanda fracionária, a previsão para o mês 10 é 20. Aplicando a suavização exponencial com uma constante de suavização de 0,3 obtemos: Como antes a previsão para o mês 10 é apenas a média para o mês 9 M 9 18,57 19 (como nós Não pode ter demanda fracionária). Para comparar as duas previsões, calculamos o desvio quadrático médio (MSD). Se fizermos isso, descobrimos que, para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,3 geral, então vemos que a média móvel de três meses parece dar as melhores previsões de um mês de antecedência, uma vez que tem um menor MSD. Assim, preferimos a previsão de 20 que foi produzida pela média móvel de três meses. Exemplo de previsão 1991 UG exame A tabela abaixo mostra a demanda por uma determinada marca de fax em uma loja de departamentos em cada um dos últimos doze meses. Calcular a média móvel de quatro meses para os meses 4 a 12. Qual seria a sua previsão para a demanda no mês 13 Aplicar suavização exponencial com uma constante de suavização de 0,2 para derivar uma previsão para a demanda no mês 13. Qual das duas previsões para o mês 13 que você prefere e por que Outros fatores, não considerados nos cálculos acima, podem influenciar a demanda para o fax no mês 13 A média móvel de quatro meses para os meses 4 a 12 é dada por: m 4 (23 19 15 12) 4 17,25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19) 4 24,75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30,5 m 9 (37 33 32 30) 4 46,25 A previsão para o mês 13 é apenas a média móvel para o mês anterior, ou seja, a média móvel Para o mês 12 m 12 46,25. A previsão para o mês 13 é 46. Aplicando a suavização exponencial com uma constante de suavização de 0.2 obtemos: Como antes a previsão para o mês 13 é apenas a média para o mês 12 M 12 38.618 39 (como nós não podemos ter a demanda fracionária) Não pode ter demanda fracionária). Para comparar as duas previsões, calculamos o desvio quadrático médio (MSD). Se fizermos isso, descobrimos que, para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0.2 Overall, vemos que a média móvel de quatro meses parece dar as melhores previsões de um mês de antecedência, uma vez que tem um MSD mais baixo. Assim, preferimos a previsão de 46 que foi produzida pela média móvel de quatro meses. A demanda sazonal mudanças de preços de publicidade, tanto esta marca e outras marcas situação económica geral nova tecnologia Exemplo de previsão 1989 UG exame A tabela abaixo mostra a demanda por uma determinada marca de forno de microondas em uma loja de departamentos em cada um dos últimos doze meses. Calcule uma média móvel de seis meses para cada mês. Qual seria sua previsão para a demanda no mês 13 Aplicar suavização exponencial com uma constante de suavização de 0,7 para derivar uma previsão para a demanda no mês 13. Qual das duas previsões para o mês 13 você prefere e por que Agora não podemos calcular um seis Mês móvel até que tenhamos pelo menos 6 observações - ou seja, só podemos calcular tal média a partir do mês 6 em diante. Por conseguinte, temos: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32,00 m 8 (35 36 34 32 30 29) 6 32,67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38,17 A previsão para o mês 13 é apenas a média móvel para o Mês anterior àquele, ou seja, a média móvel para o mês 12 m 12 38,17. A previsão para o mês 13 é 38. Aplicando a suavização exponencial com uma constante de suavização de 0,7 obtemos: Técnicas de Previsão de Demanda: Mover Média Suavização Exponencial Esta lição discutirá a previsão da demanda com foco nas vendas de estabelecidas bens e serviços. Ele irá introduzir as técnicas quantitativas de média móvel e suavização exponencial para ajudar a determinar a demanda de vendas. O que é Demand Forecasting Mais uma vez, é a temporada de férias. Os miúdos estão prontos para uma visita de Santa, e os pais são forçados para fora sobre compras e finanças. As empresas estão finalizando suas operações para o ano calendário e se preparando para entrar em tudo o que está por vir. A ABC Inc. fabrica fios telefônicos. Seus períodos de tempo de contabilidade e operações são executados em um ano calendário, de modo que o final do ano lhes permite concluir as operações antes da pausa de férias e planejar para o início de um novo ano. Sua hora para que os gerentes preparem e submetam seus planos operacionais dos departamentos à gerência sênior assim que podem criar um plano das operações organizational para o ano novo. O departamento de vendas está estressado fora de suas mentes. A demanda por fios telefônicos foi reduzida em 2015 e os dados econômicos gerais sugerem uma queda contínua nos projetos de construção que exigem fio telefônico. Bob, o gerente de vendas, sabe que a alta administração, o conselho de administração e as partes interessadas esperam uma previsão de vendas otimista, mas ele sente o gelo da recessão da indústria rastejando atrás dele para enfrentá-lo. Previsão de demanda é o método de projetar a demanda do cliente por um bem ou serviço. Esse processo é contínuo, onde os gerentes usam dados históricos para calcular o que eles esperam que a demanda de vendas de um bem ou serviço seja. Bob usa informações do passado da empresa e adiciona-o a dados econômicos do mercado para ver se as vendas vão crescer ou diminuir. Bob usa os resultados da previsão de demanda para definir metas para o departamento de vendas, ao tentar manter-se em linha com os objetivos da empresa. Bob será capaz de avaliar os resultados do departamento de vendas no próximo ano para determinar como sua previsão saiu. Bob pode usar diferentes técnicas que são qualitativas e quantitativas para determinar o crescimento ou declínio das vendas. Exemplos de técnicas qualitativas incluem: Adivinhação educada Mercado de previsão Teoria dos jogos Técnica Delphi Exemplos de técnicas quantitativas incluem: Extrapolação Exploração de dados Modelos causais Modelos Box-Jenkins Os exemplos acima listados de técnicas de previsão de demanda são apenas uma pequena lista das possibilidades disponíveis para Bob como ele Práticas de previsão da demanda. Esta lição incidirá sobre duas técnicas quantitativas adicionais que são simples de usar e fornecem uma previsão objetiva e precisa. Fórmula média móvel Uma média móvel é uma técnica que calcula a tendência geral de um conjunto de dados. Na gestão de operações, o conjunto de dados é o volume de vendas de dados históricos da empresa. Esta técnica é muito útil para prever tendências de curto prazo. É simplesmente a média de um conjunto selecionado de períodos de tempo. É chamado de movimento, porque como um novo número de demanda é calculado para um próximo período de tempo, o número mais antigo no conjunto cai fora, mantendo o período de tempo bloqueado. Vejamos um exemplo de como o gerente de vendas da ABC Inc. irá prever a demanda usando a fórmula da média móvel. A fórmula é ilustrada da seguinte forma: Média Móvel (n1 n2 n3.) N Onde n o número de períodos de tempo no conjunto de dados. A soma do primeiro período de tempo e de todos os períodos de tempo adicionais escolhidos é dividida pelo número de períodos de tempo. Bob decide criar sua previsão de demanda com base em uma média móvel de 5 anos. Isso significa que ele usará os dados de volume de vendas dos últimos 5 anos como os dados para o cálculo. Suavização Exponencial A suavização exponencial é uma técnica que utiliza uma constante de suavização como um preditor de previsão futura. Sempre que você usar um número na previsão que é uma média, ele foi suavizado. Esta técnica toma dados históricos de períodos de tempo anteriores e aplicou o cálculo para suavização exponencial para prever dados futuros. Neste caso, Bob também aplicará suavização exponencial para comparar contra o cálculo anterior de uma média móvel para obter uma segunda opinião. A fórmula para suavização exponencial é a seguinte. F (t) previsão para 2016 F (t-1) previsão para ano anterior alfa alisamento constante A (t-1) vendas reais do ano anterior A constante de suavização é um peso que é aplicado à equação com base em quanta ênfase a empresa Coloca os dados mais recentes. A constante de suavização é um número entre 0 e 1. Uma constante de suavização de 0,9 sinalizaria que a administração coloca muita ênfase nos dados de vendas históricos dos períodos de tempo mais anteriores. Uma constante de suavização de 0,1 indicaria que a administração coloca muito pouca ênfase no período de tempo anterior. A escolha de uma constante de suavização é imprevisível e pode ser modificada à medida que mais dados estiverem disponíveis. Usaremos o gráfico acima com o volume de vendas histórico para calcular a previsão exponencial de suavização para 2016. Há uma coluna extra para incluir o volume de vendas previsto. Este cálculo é uma fórmula bastante eficiente e bastante preciso em comparação com outras técnicas de previsão da demanda. Resumo da Lição A previsão de demanda é uma parte essencial dos planos projetados da empresa para períodos de tempo futuros. Diferentes técnicas podem ser usadas, tanto qualitativas como quantitativas, e fornecem diferentes conjuntos de dados aos gestores à medida que prevêem a demanda, especialmente no volume de vendas. A média móvel e as técnicas de suavização exponencial são exemplos justos de métodos a usar para ajudar a prever a demanda. Para desbloquear esta lição você deve ser um Membro de Estudo. Crie sua conta Ganhando crédito da faculdade Você sabia que temos mais de 79 cursos de faculdade que o preparam para ganhar crédito por exame que é aceito por mais de 2.000 faculdades e universidades. Você pode testar fora dos primeiros dois anos de faculdade e salvar milhares fora de seu grau. Qualquer pessoa pode ganhar crédito por exame, independentemente da idade ou nível de educação. Transferência de crédito para a escola de sua escolha Não tenho certeza que faculdade você deseja participar ainda Estudo tem milhares de artigos sobre cada grau imaginável, área de estudo e carreira que pode ajudá-lo a encontrar a escola que é certo para você. Pesquisa Escolas, Graus e Carreiras Obtenha as informações imparciais que você precisa para encontrar a escola certa. Procurar artigos por CategoryIn prática a média móvel fornecerá uma boa estimativa da média da série de tempo se a média é constante ou lentamente mudando. No caso de uma média constante, o maior valor de m dará as melhores estimativas da média subjacente. Um período de observação mais longo medirá os efeitos da variabilidade. A finalidade de fornecer um m menor é permitir que a previsão responda a uma mudança no processo subjacente. Para ilustrar, propomos um conjunto de dados que incorpora mudanças na média subjacente das séries temporais. A figura mostra a série de tempo usada para ilustração juntamente com a demanda média a partir da qual a série foi gerada. A média começa como uma constante em 10. Começando no tempo 21, ele aumenta em uma unidade em cada período até atingir o valor de 20 no tempo 30. Então ele se torna constante novamente. Os dados são simulados adicionando à média um ruído aleatório de uma distribuição Normal com média zero e desvio padrão 3. Os resultados da simulação são arredondados para o inteiro mais próximo. A tabela mostra as observações simuladas usadas para o exemplo. Quando usamos a tabela, devemos lembrar que a qualquer momento, apenas os dados passados ​​são conhecidos. As estimativas do parâmetro do modelo,, para três valores diferentes de m são mostradas juntamente com a média das séries temporais na figura abaixo. A figura mostra a estimativa média móvel da média em cada momento e não a previsão. As previsões mudariam as curvas de média móvel para a direita por períodos. Uma conclusão é imediatamente aparente a partir da figura. Para as três estimativas, a média móvel está aquém da tendência linear, com o atraso aumentando com m. O atraso é a distância entre o modelo ea estimativa na dimensão temporal. Devido ao atraso, a média móvel subestima as observações à medida que a média está aumentando. O viés do estimador é a diferença em um tempo específico no valor médio do modelo eo valor médio predito pela média móvel. O viés quando a média está aumentando é negativo. Para uma média decrescente, o viés é positivo. O atraso no tempo eo viés introduzido na estimativa são funções de m. Quanto maior o valor de m. Maior será a magnitude do atraso e do viés. Para uma série continuamente crescente com tendência a. Os valores de lag e viés do estimador da média são dados nas equações abaixo. As curvas de exemplo não correspondem a essas equações porque o modelo de exemplo não está aumentando continuamente, em vez disso, ele começa como uma constante, muda para uma tendência e, em seguida, torna-se constante novamente. Também as curvas de exemplo são afetadas pelo ruído. A previsão média móvel de períodos no futuro é representada deslocando as curvas para a direita. O atraso e o viés aumentam proporcionalmente. As equações abaixo indicam o atraso e o viés de um período de previsão para o futuro quando comparado aos parâmetros do modelo. Novamente, estas fórmulas são para uma série de tempo com uma tendência linear constante. Não devemos nos surpreender com esse resultado. O estimador da média móvel é baseado no pressuposto de uma média constante, eo exemplo tem uma tendência linear na média durante uma porção do período de estudo. Como as séries de tempo real raramente obedecerão exatamente aos pressupostos de qualquer modelo, devemos estar preparados para tais resultados. Podemos também concluir a partir da figura que a variabilidade do ruído tem o maior efeito para m menor. A estimativa é muito mais volátil para a média móvel de 5 do que a média móvel de 20. Temos os desejos conflitantes de aumentar m para reduzir o efeito da variabilidade devido ao ruído e diminuir m para fazer a previsão mais sensível às mudanças Em média. O erro é a diferença entre os dados reais e o valor previsto. Se a série temporal é verdadeiramente um valor constante, o valor esperado do erro é zero ea variância do erro é composta por um termo que é uma função de e um segundo termo que é a variância do ruído,. O primeiro termo é a variância da média estimada com uma amostra de m observações, assumindo que os dados provêm de uma população com média constante. Este termo é minimizado tornando m o maior possível. Um grande m faz com que a previsão não responda a uma mudança nas séries temporais subjacentes. Para tornar a previsão responsiva às mudanças, queremos que m seja o menor possível (1), mas isso aumenta a variância do erro. A previsão prática requer um valor intermediário. Previsão com o Excel O suplemento de Previsão implementa as fórmulas de média móvel. O exemplo abaixo mostra a análise fornecida pelo add-in para os dados da amostra na coluna B. As primeiras 10 observações são indexadas -9 a 0. Em comparação com a tabela acima, os índices de período são deslocados por -10. As primeiras dez observações fornecem os valores de inicialização para a estimativa e são usadas para calcular a média móvel para o período 0. A coluna MA (10) (C) mostra as médias móveis calculadas. O parâmetro de média móvel m está na célula C3. A coluna Fore (1) (D) mostra uma previsão para um período no futuro. O intervalo de previsão está na célula D3. Quando o intervalo de previsão é alterado para um número maior, os números na coluna Fore são deslocados para baixo. A coluna Err (1) (E) mostra a diferença entre a observação e a previsão. Por exemplo, a observação no tempo 1 é 6. O valor previsto a partir da média móvel no tempo 0 é 11.1. O erro é então -5.1. O desvio padrão eo desvio médio médio (MAD) são calculados nas células E6 e E7, respectivamente. Métodos de previsão média móvel ponderada: Prós e contras Oi, AMOR seu post. Estava me perguntando se você poderia elaborar mais. Usamos SAP. Nele há uma seleção que você pode escolher antes de executar sua previsão chamada inicialização. Se você marcar essa opção, você obterá um resultado de previsão, se você executar a previsão novamente, no mesmo período e não verificar a inicialização, o resultado será alterado. Eu não consigo descobrir o que a inicialização está fazendo. Quero dizer, matemática. Qual o resultado da previsão é melhor para salvar e usar, por exemplo. As mudanças entre os dois não estão na quantidade prevista, mas no MAD e erro, estoque de segurança e quantidades ROP. Não tenho certeza se você usa o SAP. Oi obrigado por explicar tão eficientemente seu gd demais. Obrigado novamente Jaspreet Deixe uma resposta Cancelar resposta Sobre Shmula Pete Abilla é o fundador da Shmula e do personagem, Kanban Cody. Ele ajudou empresas como a Amazon, Zappos, eBay, Backcountry e outros a reduzir custos e melhorar a experiência do cliente. Ele faz isso através de um método sistemático para identificar pontos de dor que afetam o cliente eo negócio, e incentiva a ampla participação dos associados da empresa para melhorar seus próprios processos. Este site é uma coleção de suas experiências que ele quer compartilhar com você. Comece com downloads gratuitos

No comments:

Post a Comment